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An Algorithm for the Exact Reduction of a Matrix to 
Frobenius Form Using Modular Arithmetic. II 

By Jo Ann Howell* 

Abstract. Part I contained a description of the single-modulus algorithm for reducing a 
matrix to Frobenius form, obtaining exact integral factors of the characteristic polynomial. 
Part II contains a description of the multiple-modulus algorithm. Since different moduli may 
yield different factorizations, an algorithm is given for determining which factorizations are 
not correct factorizations over the integers of the characteristic polynomial. Part II also 
contains a discussion of the selection of the moduli and numerical examples. 

C. THE MULTIPLE-MODULUS ALGORITHM 

7. Introduction. The algorithm described in Chapter B uses single-modulus 
residue arithmetic to reduce a matrix A to Frobenius form (1.1). We recall that the 
size of the modulus p depends on the bound 1 (4.4). If 23 is too large to be represent- 
able in a computer as a single-precision integer, then p will have to be stored as a 
multiple-precision integer, making computations modulo p too difficult to be practical. 

In order to avoid this problem, we select a set of prime moduli, Pi, P2, *, P8, with 

(7.1) P = PiP2 ... Ps, 

because this enables us to obtain results modulo p by doing most of the arithmetic 
modulo pi, for i = 1, 2, ... , s. Choosing the moduli as primes also guarantees 
that** (pi, pi) = 1, for i # j. Furthermore, we choose the moduli so that 

(7.2) p > 23 > ? 2max jbij, 

where the b5i' are defined in (4.2). 
We perform similarity transformations modulo pi on (Alp,, for i = 1, 2, , s, 

by using the single-modulus procedure described in Chapter B in order to obtain the 
residue representations (see Szabo and Tanaka [1967, p. 12]) for the factors of the 
characteristic polynomial module p of A, 

E7.3 [A ) __ f\ lfA Ii 1f()1( .. I lf(X lp I 
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From these s-tuples we can determine If,(X)h, using the Chinese Remainder Theorem 
or some variation of it such as the mixed-radix conversion procedure. (See Szabo 
and Tanaka [1967, pp. 27, 43], Lipson [1971], and Howell and Gregory [1970].) This 
means that since p is chosen according to (7.2), we can determine fi(X). Examples 
illustrating the algorithm are given in Chapter E. 

Since different moduli may give us different factorizations, we must monitor the 
reductions, keeping a record of rows which are interchanged and pivots which vanish 
in order to use only the factorizations modulo pi which give us the correct factorization 
over the integers for det (A - XI). This monitoring scheme and the multiple-modulus 
reduction are described in the next sections. 

8. Block Structures in the Frobenius Form. In the ideal situation all moduli 
used would yield the same block structure (blocks of the same order and arranged in 
the same pattern along the diagonal). This is not always the case, as Example (6.2) 
illustrates. 

In order to guarantee that we can reconstruct the factors by means of the Chinese 
Remainder Theorem, the factors obtained using the modulus p. must be of the same 
degrees as those factors obtained using Pk (for all i and k). Moreover, the factors must 
appear in the same order along the diagonal. This implies that even if two or more 
factors of the same degree, ri, are obtained using the modulus pi, they must appear 
in the same order as their corresponding factors of degree ri obtained using the 
modulus pk. 

We now show that if we have obtained blocks of corresponding orders for two 
or more moduli, then these blocks can be combined using the Chinese Remainder 
Theorem to obtain the blocks we would have obtained had we done our calculations 
modulo P1P2 ... P. p p. That is to say, if the blocks obtained using the multiple- 
modulus algorithm are of corresponding sizes for different moduli, then they are in 
the proper order for obtaining the Frobenius form modulo p using the Chinese 
Remainder Theorem. 

We prove this by considering the transforming matrices J,(Pi , where 

I J(pi ) A-l(pi X( j5Pz) jI = I (P)-l p . . (i)-l( (Pi) (i) ,. . J(zx )I 

(8 .1 ) = I J(P - ' (p ) A (p' . j(Pi ) l = F D- -] 

L ? HiP 

and D( is a (j + 2) X (j + 2) submatrix which is in Frobenius form except for the 
subdiagonal elements which are not yet reduced to unity. We must show that if 

I Ji( p)A( ]J(P2) IjP = j ] P)-j(p) 
. . . 

J(7)-2(p)A(2) ) 4.. 
) I 

(8.2)1 * 
(.=I J(P(p)A) ](P) J = K j 

0 H 
) 

where D(") is a (j + 2) X (j + 2) submatrix in Frobenius form except for the nonunity 
subdiagonal elements, then 

(8.3) I K = I(Pi) 
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for all i, and hence 

(8.4) jD(1 |Pi = D 

and 

(8.5) jH(P) Pi = H(P'). 

The same arguments can then be applied to the submatrices H(Pi) and H(P) to show 
that 

(8.6) jD Pj 
= D2 

and 

(8.7) 1 H(P) 1pt = 
H2P'). 

Continuing in this manner we can show that 

(8.8) =Dk | P 
= D 

for all k. We now prove (8.4) and (8.5). 
First we examine JkP) (k = 1, * * *, j). We shall assume for the moment that no 

row interchanges have taken place. We have 

( ) 
Alk+1 

Ik+ 1 a 

( ) 
-AA + 1, A;+ 1 

(8.9) j (P)= 0 .. 0 1 0 * 0 (k =1,* ,j) 

( ) 
-Ak+3 ,k+l 

(72) 

_A Iwn, k + 1 

where 

(8.10) -/A(k+l = lal k+l ak+2,k+1 (P) IP. 

Since 

(P) II (k) (P) (k) (p)-+1 I I 

(8.1 1) I~wl ,k+l = I lal,k+l ak+2,k+1 P)IJPi 
(k) (Pi) (k) (Pi)1s (Pi) I 

= lalk+l *ak+2,k/+1 (pi}IPi = | AI,k+l Pi 

then 

(8.12) |ik P = I= pJi 

Thus, 

I (P) I _P J(P) (P) .. (P) 

(8.13) K = j JO 141 * * * p i 
= J(P) . . . J(Pi) IP = I J(Pi) I 
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and hence 

(8.14) I = jI j(Pi)-(pi)lpi. 

Therefore, 

IJ(P)-)A(P) ) jlpi = I J()(p) I Alp J(P)i 

(8.15) = j J(P) - 
(pi) I A Pi J(Pi) |Pi 

= | J ( fs io ) |P IJ(P')1(pi)AP'V 
P')pi, 

and thus, 

(8.16) ID P)'i D =D 

and 

(8.17) H(P)Ipi = MP). 

Applying the same arguments to H(P) and HPi) (k = 2, * , j- 1) we thus prove 
(8.8). It follows immediately from this that 

(8.18) I F.P) lPi = Fj(i`j. 

We see from the above that applying the Chinese Remainder Theorem to the 
Fiji) gives the F(P), the blocks we would have obtained had we done our arithmetic 
modulo p instead of modulo pI, i = 1, I , s. It is important to note that this analysis 
is based on the assumption that partitioning occurred at the same point for all moduli. 

If a zero pivot occurs somewhere between columns one and j + 1 which can be 
removed by pivoting rows, then the same rows must be pivoted for all moduli. This 
necessitates a monitor on the rows being pivoted during the course of reduction. If it is 
impossible to pivot the same rows for all moduli, then the odd modulus (or moduli) 
must be discarded and another tried. This assures us that even when pivoting occurs, 
(8.8), (8.13), and (8.18) still hold. 

From the above arguments and Theorem (6.4), we see that if a2('Pp1k) $ 0, then 
the same pivot must be nonzero in the rational arithmetic algorithm, provided previous 
pivots for the two algorithms vanished at the same point. Thus, if di) (pi) vanishes 
for pk (k / i), it must be vanishing because 

(8.19) la~') i?1-(a( -))bl . .. (a(0) j =b 0 ( 8 . 1 9 ) | a i + 2 a i + l (a i + l a 1 ) (a 2 1 ) l p k 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +2 i 1, 2 11 

or because Iai+2 a +l pk = 0 and not because a 2 = 0. Thus,pk should be discarded. 
This implies that if we compare the size of the initial (leading) blocks (F(pi)) 

obtained by reductions modulo pl, P2, * *, p, then only the moduli which have 
produced those blocks of maximum size should be retained and all others should 
be discarded. Thus, if the s of the moduli produce an initial block of order j + 1, then 
either a 2 ,+1 = 0, or ad22 j+1 is an integer and Ia+22i+) = 0, or 

(8.20) lai)2, i+. ( )bl .. )br I, = 0 

where p is the product of the s moduli. By demanding that we have at least K moduli 
which produce like factorizations (K > 1 being some input parameter dependent 
upon the size of the computer word and the size of the moduli used) we can make p 
as large as we like. By choosing p large we lessen the chance of having 
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(8 .21) a2i) 
+(aJal) 

)bl ... (a(?) )br = C.p, 

where C is an integer not equal to zero. Thus, a large p will increase the probability 
that a 22(P)+1 = 0 if and only if aj22 j+1 = 0. 

By comparing the sizes of blocks 2, * , 1, in a similar manner we can eliminate 
"bad" choices of pi until we are left with a set of moduli which have all produced the 
same block structures with blocks of maximal size. If their pivoting patterns are all 
the same, if the number of "successful" moduli is greater than K, and if the product 
of the moduli is greater than 23, then we can apply the results of the last section and 
use the Chinese Remainder Theorem to get the factors modulo p, where p is the 
product of the moduli. 

We must emphasize that even though we have at least K matching reductions, and 
this increases the probability that aj'+)P)1 = 0 if and only if a'2 +1 = 0, we cannot 
guarantee that this is the case. For example, if K = 3 and pi are approximately 107, 
then p 1021. Then, for the method to fail to produce the correct factors, we must 
have a 2j"P)+1 0 and either 

(8.22) a )2 i+J(a+ ) b ... (a( ) )br = C*PlP2P3 - C. 1021, 

or 

(8.23) ai=2,i+l = C'pp2p3, 

where C is an integer. Although it is extremely unlikely for the left side of (8.22) or 
(8.23) to be an integer multiple of P1P2P3, a product of primes, the possibility never- 
theless still exists. 

An example of the multiple-modulus algorithm is in Section 11. 
The following is an algorithm for the reduction of a matrix to the form F in (1.1). 
Algorithm III. Reduction of a Matrix A to the Form (1.1) (Multiple-Modulus 

Algorithm). 
Input: An n X n matrix A, a set of stored moduli (pl, P2, ... Pa), min (minimum 

number of moduli to be used), ndigit (number of digits stored in each word for a 
multiple-precision integer). 

Output: An n X n matrix F in the form (1.1). 
(1) Compute a bound f for the product of the moduli. (We must havep1P2 ... P8 

? 2. f.) 
(2) Set i <- 0, product <- 1, errorcode <- 0, 2t O- 0 (t = 1, * , q). 
(3) Set i *- i + 1, s *- i, p *- pi, product *- product-pi, A *- 

(4) Apply Algorithm I and Algorithm II to A. 
(5) Set i <- 1', k <- 0. 
(6) Fort= 1, F ,/',setm- k+ 1,k ---- k+r")1,* <- a, k(1= m, *.. , k). 
(7) [Check to see if enough moduli have been used.] If product < 2. 3, go to (10). 
(8) If i < min, go to (10). 
(9) If errorcode = 0, set match <- i. Go to (12). 

(10) [Compare i with total number of moduli stored.] If i < q, go to (3). 
(11) [An insufficient number of moduli is stored.] Exit (failure). 
(12) For t = 1, ,q, set modulust - O and tempt *- t; set j --s, errorcode*- 0, 

K*- max t et (t = , , s). 
(13) Set k -0. 
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(14) [Compute maximum block size.] Set k <- k + 1, maxblock 
max1l?t: r'(PtemPt), counter <- 0. 

(15) Set t -0. 
(16) Set t t-+ 1. 
(17) [Compare block sizes.] If r<(PtemPt) $ maxblock, go to (19). 
(18) Set counter <- counter + 1, Ptempcounter Ptempt 

(19) If t < j, go to (16). 
(20) Set j <- counter. 
(21) If j < match, set errorcode <- 1, and go to (10). 
(22) Set K - maxt tempt (t = 1, * j). If k < K, go to (14). 
(23) Setk<-1. 
(24) Setk<-k+ 1. 
(25) Set t <- 0. 
(26) Set t- t + 1. 
(27) [Compare pivoting patterns.] If, for all v (1 ? v ? n - 2), 

pi~~empk) = (Pvt ~emp t) an io~empk) = t(Ptemp t) p ivot (Pt emp)=p ivo'tV 1P and p ivot(P 2 p ivotv2 X 

go to (28), otherwise go to (35). 
(28) Set modulus1 Ptempt, modulus2 Ptempkl ip- 2. 
(29) Set ii *- k. 
(30) Set ii * ii + 1. 
(31) If, for all v (1 ? v < n - 2), 

pivot(Ptempk) = pivottempij) and piVot mpl) = pivotemp) 

go to (32), otherwise go to (33). 
(32) Set ip <- ip + 1, modulusi, < Ptempi 

(33) If ii < j, go to (30). 
(34) If ip ? match, go to (38). 
(35) If t < k - 1, go to (26). 
(36) If k < j, go to (24). 
(37) Set errorcode <- 1, and go to (10). 
(38) Set errorcode *- 0, 1 (- ?K, and rk - moduIus) (k = 1, * * * . 

(39) For t = 1, , ip, set 01k,t ( 0k,modulust (k = 1, , n). 
(40) For k 1, * , n, combine the residue digits 9Lk, 1, * 1 * k,iP using the 

Chinese Remainder Theorem Algorithm. 
(41) Store the multiple-precision combined results in k,1 through kip ndigit 

digits per word, with the most significant digits in ski P 

(42) Set F *- 0, counter 2 *- 0. 
(43) For i = 1, * , 1, set counter 1 - counter 2 + 1, counter 2 *- counter 1 + 

ri - 1, fkcounter2 *- multiple-precision integer {90k,im 
... , 9k,1} (k = counter 

1, * , counter 2). 

D. SELECTION OF THE MODULI 

9. Introducton. In practice, the moduli are chosen as large prime numbers. 
The choice of the moduli as primes is necessary in order to guarantee the existence 
of inverses for integers and matrices. We recall that when Pk is a prime, the integers 
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modulo Pk form a field. Furthermore, by choosing the Pk as primes, we guarantee 
that 

(9.1) (Pipi) = 1, 

for i $ j, as required by the Chinese Remainder Theorem. 
Ideally, the primes should be chosen as large as possible and so that pipi does 

not overflow a fixed-point computer word, for all i and j. This guarantees that an 
intermediate result will not overflow before it can be reduced modulo Pk for all k. 
In addition to this, time can be saved by using a small number of large primes rather 
than a large number of small primes. Furthermore, by choosing the moduli as large 
prime numbers we greatly increase the probability that the disappearance of a pivot 
during the reduction modulo pk has occurred because the same pivot would disappear 
during the rational arithmetic algorithm. We must further have Pk > n for all k in 
order to be able to reconstruct the characteristic polynomial from its residue repre- 
sentation. 

10. Calculation of a Bound for p. Let 

(10.1) det(A - XI) = (-1)8(XA - - _ 
. - xn-1X - xn) 

= f1(X) *. f1(X), 

where 

(10.2) f i(X) (_~i>ib(')Xr-l _...-b(')i 1X - b"t). 

We wish to compute a lower bound for p so that if we have a prestored set of primes 
we select and use as many moduli as necessary to guarantee a solution (i.e., to guar- 
antee that Idet (A - XI)I, = det (A - XI)). 

If it is known that the matrix A has a characteristic polynomial which is irreducible 
over the integers, then I = 1. In this case we obtain a bound for max, Iix j by utilizing 
the fact that xi is plus or minus the sum of the principal minors of order j. From 
Hadamard's inequality we have 

n n \1/2 

(10.3) IXnI < jaii12 ... E lanil) = k. 

Thus, any principal minor of order less than n is also bounded by k. 
Since the number of principal minors of order j is equal to (n), we have 

(10.4) 1 1l < ()k. 

Hence 

(10.5) maxjxj < (nmax( .k n k 
i ~~~~~~[n12] 

and we should choose p so that 

(10.6) p ([n/2] 

Therefore, in (4.4) we have 
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(10.7) = k. 

If it is not known that I = 1, then the bound (10.7) may not be sufficient. It is 
possible for some of the coefficients of the f,(X) to be greater in absolute value than 
max, lXji . 

A method for bounding the coefficients I is based on a suggestion by Collins 
(see Knuth [1969, p. 392]). We note that 

(10.8) f,(X) (-1)r'(X' -- . -b i-b8, 

= (-1)?"(X - ') . (. - ), 

where the y"') are eigenvalues of the matrix A. Thus, if we have a bound a for the 
eigenvalues of A, then 

(10.9) jbI< ' 

Therefore 

(10.10) maxjb, I < max(m i ~a = n 

and we should choose p so that 

(10.11) p>~ 2(( n )a~ = 2(3. 

Bounds for a such as 1lAII., tAll1, or the bound given by Ostrowski [1952] are 
suitable. In practice, the bounds computed using either (10.6) or (10.11) are larger 
than necessary to guarantee that I = b 

In the next section we give examples illustrating the computation of a bound 13 and 
examples of the multiple-modulus algorithm. 

E. EXAMPLES AND NUMERICAL RESULTS 

11. Two Examples. Let 
2 0 0 

A= 0 1 0. 

_0 4 5 

We let the stored set of moduli be {7, 11, 13, 17, 191. We shall assume that regardless 
of the computed bound (3 we require at least two moduli to give the same block 
structures. If we compute a bound f3 by (10.7) we have 

A= (3)(4.1.41)1/2 3(12.8) -38.4. 

The bound from (10.11) with a = hAll1 is 

(3= (3). 53= 375, 
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and with a = ttAttI it is 

A= (1)93= 2187. 

If a is computed from Ostrowski [1952], we have 

a = R - (1 - o)K, 

where 

R = t1Att. = 9, r = min E jai = 1, 

K = minlai I = 1 and a = ((r - K)(R- K))12 = O. 
i.i 

Then 

a 9- 1 = 8 and =()83 = 1,536. 

Clearly, all of these bounds are larger than necessary to guarantee that Ifi(X)t = fj(X). 
In practice, the bound given by (10.7) is usually adequate, even if it is not known 
that I = 1. 

To illustrate the multiple-modulus algorithm for the matrix A, we choose Pi = 7 
and P2 = 1L. (Note that 77 > 23, where ( is computed by (10.7).) Transforming the 
matrix modulo 7, we obtain 

2 0 0~ 

F17 = 00 2 

Thus, the residue modulo 7 of the factors of the characteristic polynomial are 

lf1(X)17 = X - 2 and 1f2(X)17 = X2 + X - 2. 

Now rows were interchanged to produce a nonzero pivot. Transforming the matrix 
modulo 11, we have 

2 0 0~ 

F(l) = O 
'5]. 

Thus, 

Ifj(X)Ijj = X - 2 and 1f2(X)I11 = X2 + 5X + 5. 

Again, no rows were interchanged to produce a nonzero pivot. 
The residue representations for f,(X) and f2(X) for moduli Pi = 7 and P2 = 

are thus 

f(X) {X - 2, X -2} and f2() I{X2 + X - 2, X2 + 5X + 5}. 
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Since the two moduli used yield the same block structures, and since the same pivoting 
strategies were used in both cases, we can apply the Chinese Remainder Theorem to 
the coefficients of the polynomials Ifi(X)Ij, and obtain results modulo PP2 = 77: 

fl(X)177 = X - 2 and 112(X)177 = 2 - 6X + 5. 

Hence, 

f1(X) =X-2 and f2(X) = 2 - 6X + 5. 

In the next example we let A be the matrix, used in (6.1) and (6.2), 

F 0 1 0 

A=0 0 0 0, 
7 1 0 1 

and the stored set of moduli be {5, 7, 13, 17, 19}. Again we require that at least 
two moduli give the same block structures. Computing : by (10.7) we obtain 

= (4)(1.5125)1/2 = 6(35.7) = 214.2. 

Thus, we should have 

p ? 428.4. 

We saw in (6.3) that transforming A modulo 5 leads to an interchange of rows 2 
and 3, and we obtain 

0 2 0 0~ 

(5) _ _ _ _ F =- 

0 0 0 0 

Thus, we have three factors 

Idet(A - XI)15 I(X2 - 2). X 15. 

For P2 = 7, we interchange rows 2 and 4 and obtain 

0 0 3 0 

(7) = 1 0 0 0 

0 1 0 -2 

L0 00 01 
and the factorization 

Idet(A - XI)17 = 1(X3- 3)* 17. 
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For p3 = 13, we interchange rows 2 and 3 in step one, and later rows 3 and 4. We 
obtained, in Example (6.1), 

0 0 5 

F(13) I 0 -6 

0 1 0 -5 

and hence the factorization 

Idet(A - XI)13 = I(X3 + 6X- 5) XI13. 

At this point we note that the product of moduli used so far exceeds the bound 
2A (PlP2P3 = 455). If all block structures are the same at this point, and if all pivoting 
strategies are the same, we can apply the Chinese Remainder Theorem to the factors 
obtained. However, this is not the case in this example. We can immediately discard 
pi since it produced an initial block which is smaller than the one obtained using P2 
and p3. The remaining two moduli yield identical block structures, but different 
pivoting strategies. It is not apparent at this point which is the correct one. Hence 
we must try other moduli. Since the bound 23 indicates that at least three moduli will 
have to yield identical reductions (blocks of corresponding orders and the same 
pivoting strategies) we will have to try at least two more primes. 

For p4 = 17, we obtain 

0 0 5 2- 

1 0 7 0 
(17) 707 

and the factorization 

Idet(A - XI)117 = I(X3 - 7X - 5)*X117. 

The rows interchanged are 2 and 3 and rows 3 and 4. 
For p, = 19, we obtain 

0 0 5 -9 

1 0 7 0 
F4 

0~9 1 0 4 

and the factorization 

Idet(A - XI)119 = I(X3 - 7X - 5).X119. 
The rows interchanged are rows 2 and 3 and rows 3 and 4. 

We compare the results obtained using P2, P3, p4, and p5. The block structures are 
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all the same. For p3, p4, and p5 the pivoting strategies are the same. Since p3p4p5 > 2f 
we can use the Chinese Remainder Theorem to obtain the coefficients of the factors 
modulo p3p4p5 = 4199. We thus obtain 

jdet(A- X I)14199 = (X3 -7X- 5)X 14199, 

and hence 

det(A - XI) = (X3- 7X- 5)X. 

In a computer program it is more efficient to use the largest stored primes first, 
since this may decrease the number of primes which must be used to guarantee 
that p > 2f. 

13. Results from a Computer Program. A program for reducing a matrix to 
Frobenius form and obtaining a factorization of its characteristic polynomial by the 
method described in this paper was written in FORTRAN for the CDC 6600 at the 
University of Texas at Austin. The set of stored primes used are as follows (Lehmer 
[1914]): 

10,000,019 

10,000,079 

10,000,103 

10,000,121 

10,000,139 

10,000,141 

10,000,169 

10,000,189 

10,000,223 

10,000,229. 

The bound j3 was computed using (10.7). In each of the following examples we exhibit 
a matrix and the factorization of its characteristic polynomial obtained using the 
program. We required at least three like reductions, regardless of the size of d 

Example 1. (Slotnick [1963, p. 4-43]) 

3 -1 -4 2 

A =L2 3 -2 4j 
2 -1 -3 2 

-1 2 -1 3-3 

Eigenvalues: 

X = 1, X3= 1, 

X2= -, X4= - I 
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> computed by program: 3.10 X 103. 

Number of moduli used: 3. 
Factorization of det (A- XI) from program: 

det(A X AI) = (X3 _ 2 _ X + 1)(X + 1). 

Example 2. (Eberlein [1962], Gregory and Karney [1969, p. 90]) 

15 11 6 -9 -15 

1 3 9 -3 -8 

A = 7 6 6 -3 -11 

7 7 5 -3 -11 

_17 12 5 -10 -16_ 

Eigenvalues: 

A, = 1.5 + (12.75)1/2j, 

2 = 1.5 + (12.75)1/21, 

3 = 1.5 - (12.75)1/2., 

X4= 1.5 - (12.75)1/2i, 

5 = -1. 

X computed by program: 2.41 X 107. 
Number of moduli used: 3. 
Factorization*** of det (A - XI) from program: 

det(A - XI) = (-1)5(X5 - 5X4 + 33X3 - 5IX2 + 135X + 225). 

Example 3. (Gregory and Karney [1969, p. 7]) 

B C 

where 

-364,270 0 0 

1 - 364,270 0 0 

B = 0 1 -364,270 

0 -918,326 0 

1 -918,326 

and 

*** We note that this is a case in which the characteristic polynomial is factorable over the 
integers, (- 1)5(X + 1) (X4- 6X3 + 39X2 - 90X + 225), but the program finds only one factor, that 
factor being the characteristic polynomial itself. 
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-694,488 0 0 

0 -694,488 0 0 

C = 0 0 -694,488 

0 965,197 0 

L 0 965,197 

Eigenvalues: 

X, = 330,218, Xf3 = -1,058,758, 

X2= 330,218, X7 = -1,058,758, 

X3= 330,218, X8 = -1,058,758, 

X4= 46,871, 9= -1,883,523, 

X5= 46,871, X10 = -1,883,523. 

X computed by program: 1.79 X 1062. 

Number of moduli used: 9. 
Factorization of det (A - I) from program: 

(X2 + 1,836,652X - 88,282,606,533).(X2 + 1,836,652X - 88,282,606,533) 

*(X6 + 2,185,620X5 + 543,448,747,068X4 - 1,141,589,515,081,478,560X3 

- 1,901,066,815,376,621,816,592X2 

+ 267,158,841,389,405,409,701,792,512,320X 

- 42,735,849,656,157,591,523,087,007,405,518,784). 

F. CONCLUDING REMARKS 

Since different moduli may yield different Frobenius forms and, hence, different 
factorizations for the characteristic polynomial it is recommended that the multiple- 
modulus algorithm and not the single-modulus algorithm be used in designing a 
computer program. The multiple-modulus algorithm is also recommended when 2( 
is larger than a11/2, where a is the largest computer-representable integer. 

Care must be taken in using the multiple-modulus algorithm, however. A check 
must be made on reduction modulo pi for all i to insure that their pivoting patterns 
are identical. The moduli yielding reductions with identical block structures and 
pivoting patterns are then checked to see if their product is greater than some preset 
constant, K. If so, then the Chinese Remainder Theorem is applied to the residue 
representations for the coefficients of the factors. 

The number K should be some number greater than 1 such that a product of K 
moduli yields some "large" number. As K becomes larger, the probability becomes 
greater that the vanishing of a pivot for all moduli means that the same pivot would 
have vanished had we used rational arithmetic. (See Theorem (6.4).) It cannot be 
overemphasized that the method can fail if either K is too small or if not enough 
moduli are stored to give p > 2(. 
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The bound f3 can be computed by several methods, most of which yield bounds 
which are larger than necessary. By choosing the moduli as large as possible we can 
reduce the amount of work to be performed even though the bound is too large. 

We emphasize that the block structure obtained for a given matrix is not unique. 
The form obtained depends upon the order in which the elements below the first 
subdiagonal are annihilated. Changing the order in which the elements are annihilated 
may change either the order of the blocks on the diagonal or the size of the blocks. 
Clearly, the form obtained is not a canonical form, as the following example illustrates. 

Example. Let p1 = 13 (we are assuming it is known that 13 > 2-maxi, i b'I) 
and 

2 0 0 

A= 0 1 

_0 4 5- 

The modified Danilewski algorithm transforms A into the form 

42 : 0 

F - 0 -5. 

Hence 

det(A - XI) = (X - 2)(X2 - 6X + 5). 

If we select 

2 0 0 

A' 0 1 0 

(a matrix similar to A), we obtain 

F' 0 1 0 

Hence 

det(A - XI) = (X - 2)(X- 1)(X - 5). 

Thus, A and A' yield different factorizations for the same characteristic polynomial. 

University of California 
Los Alamos Scientific Laboratory 
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